Quasi-Phase-Matched Gallium Arsenide for Mid Infrared Frequency Conversion

E. Lallier, A. Grisard
Thales Research & Technology, France

B. Gerard
Alcatel-Thales 3-5 Lab, France
Mid-IR sources requirements and OPOs

- Tunability, multi-spectral
- High energy /peak power
- CW to short pulses
- Narrow or broad linewidth

Optical Parametric Oscillator (OPO)

Suitable MIR nonlinear crystal?

- Tunability, multi-spectral
- High energy /peak power
- CW to short pulses
- Narrow or broad linewidth
MWIR quasi-phase-matched crystal

Desirable properties for the NL crystal:

- High nonlinear coefficient
- Low absorption loss
- High laser damage threshold
- Low thermal lensing
- Non-critical phase matching

QPM vs BPM:

- High nonlinearities
- Non-critical interactions
- Engineering flexibility

<table>
<thead>
<tr>
<th></th>
<th>PPLN</th>
<th>ZGP</th>
<th>GaAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission (µm)</td>
<td>0.35-5</td>
<td>1-12</td>
<td>1-16</td>
</tr>
<tr>
<td>Nonlinear Coefficient (pm/V)</td>
<td>27</td>
<td>75</td>
<td>96</td>
</tr>
<tr>
<td>Thermal Conductivity (W/m.K)</td>
<td>5</td>
<td>35</td>
<td>52</td>
</tr>
<tr>
<td>α (cm⁻¹) (> 2 µm)</td>
<td>--</td>
<td>0,025</td>
<td>0,02</td>
</tr>
</tbody>
</table>

PPLN-like crystal for the mid-IR
Quasi-Phasematching (QPM) in GaAs

- Periods under 100 µm for near-infrared pump lasers

\[\Lambda = \frac{2\pi}{\Delta k} \]

The information contained in this document and any attachments is proprietary to THALES. You are hereby notified that any review, dissemination, distribution, copying or otherwise use of this document and any attachments is strictly prohibited without our prior written approval. © THALES 2008.
Quasi-Phasematching (QPM) in GaAs

- Following Armstrong et al. (1962)…

Boyd et al. (1966) Thompson et al. (1976)

Gordon et al. (1993)
Fabrication of Thick Orientation-Patterned GaAs

1) Fabrication of 2'' GaAs wafer with [001] orientation.

2) Fabrication of 2'' GaAs wafer with etch-stop layer and 0.1 µm GaAs layer regrowth.

3) Crystallographic inversion by wafer bonding process.

4) HVPE regrowth for >500 µm thickness.

5) Gratings defined by photolithographic process.

Mechanical & chemical etching.

Note: The information contained in this document is strictly confidential and any dissemination, distribution, copying or otherwise use is strictly prohibited without prior written approval from THALES.
Growth techniques on QPM GaAs samples

CSVT growth on 212 µm DB-GaAs sample

HVPE growth on 212 µm DB-GaAs sample

OP-GaAs template

HVPE growth on 60 µm 2” OP-GaAs template (Thales)

HVPE growth on 60 µm OP-GaAs sample (Stanford/Thales)
Hydride Vapour Phase Epitaxy (HVPE)

Physics of GaAs growth: \(\text{GaCl}_g + \frac{1}{4} \text{As}_4g + \frac{1}{2} \text{H}_2g \rightarrow \text{GaAs} + \text{HCl}_g \)

Growth Characteristics:

- Perfect growth selectivity (preserve initial orientations)
- GaAs growth with low impurity concentration (residual \(\approx 10^{14} \text{ cm}^3 \))
- High frequency desorption of As/GaCl precursors on surface
 \[\Rightarrow \text{Growth rate up to 35 \mu m/h} \]
Influences of HVPE growth parameters

Examples of HVPE growth anisotropy of GaAs crystal:

- **III/V = 9, T= 760 °C**
- **T= 780 °C, III/V = 3**

GaAs band // [-110], III/V = 3, T= 760 °C

Due to $\chi^{(2)} / -\chi^{(2)}$ orientations on OP-GaAs template:

⇒ Apparition of a morphology conflict during HVPE regrowth
HVPE regrowth on OP-GaAs template (1)

Gratings period ~30 µm

Gratings period ~ 60 µm

Gratings period ~ 212 µm
HVPE regrowth on an OP-GaAs template with intentional Si doping:

Gratings period: 60 µm

Growth parameters verify the condition: $v(113) \times \sin 55^\circ = v(-112) \times \sin 65^\circ$
Full wafer growth

2” multigrating 500 µm thick OP-GaAs

Cross section of a 3 cm-long OP-GaAs sample (63 µm grating period)

Growth characteristics:
- Growth rates:
 \(v(113) = 33 \, \mu m/h \)
 \(v(-112) = 30 \, \mu m/h \)
- 4 growth interruptions
Towards thicker samples

Old growth conditions with shorts cycles:

- 0.5 mm thickness (prior art)
- 0.8 mm thickness (summer 2009)
- 1.3 mm thickness (summer 2010)

New growth conditions with long cycles:

- 1.5 mm thickness (winter 2011)

- Thickness is limited by parasitic nucleation
- Thicker samples will require a new reactor
Optical transmission

Lowest loss measured 0.016 cm\(^{-1}\) at 2 µm (in resonant cavity)
First demonstration of GaAs OPO (2004): Stanford University & Thales

(K.L. Vodopyanov et al., Optics Letters, Vol 29, 16 (2004))

- OP-GaAs sample length: 13 mm
- HVPE layer thickness: 500 µm
- PPLN OPO pump

500 µm HVPE film

GaAs, QPM period = 61.2 µm

Signal & idler (µm)

Pump wavelength (µm)
Difference Frequency Generation

DFG at around 7.8 µm from Er and Tm CW fiber lasers: UoDusseldorf

Fig. 2. Measured (*) and calculated (solid curve) DFG output versus signal wavelength.

Fig. 3. DFG output power (*) and optimal pump (°) wavelength versus pump power.
High power GaAs OPO (2008): Institut St. Louis (ISL)
(C. Kieleck et al., Optics Letters, Vol 34, 3 (2009))

- 2.09 µm high rep.rate Ho:YAG pump, 3-5 µm emission.
- Up to 60% slope efficiency and 2.85 W output
- Efficiency comparable to ZnGeP₂
- 20 W Tm fiber laser
- 10 W Q-switched Ho:YAG
- 3.0 W MWIR at 40 kHz
- $M^2 = 1.4$
- Portable demo

A. Grisard et al., Proc SPIE 7836-06 (2010)
Parametric amplification of a DFB QCL

- 3 mW 4.5 µm CW DFB QCL
- 2.09 µm Ho:YAG 30 ns pulsed pump at 20 kHz
- 53 dB gain with 41 mm long GaAs crystal
- 600 W peak power
- \(M^2 = 1.3, \Delta \lambda < 0.5 \) nm (instr. limited)

Recent results using OP-GaAs

- 7.7 W average power ns OPO (ISL)
- Fiber laser pumped ns OPO (ISL)
- Intracavity ps DFG for THz generation (Stanford)
- Fs MIR frequency comb (Stanford)
- CW OPO (BAE US)
Aknowledgments

- C. Kieleck, M. Eichhorn, and A. Hildenbrand (ISL)
- S. Vasilyev and S. Shiller (UoDusseldorf)

- Part of this work was supported by the French MoD DGA/UM-TER/CGN
- Part of this work was/is supported by the European Comission:
 - VILLAGE (http://www.neo.no/village)
 - MIRSURG (http://www.mirsurg.eu)
 - IMPROV (http://www.fp7project-improv.eu)