High power fiber lasers emitting at 1030 nm and 976 nm

E. Cormier

CELIA Université Bordeaux I-CNRS-CEA,
351 cours de la Libération F-33405 Talence, France
1. Introduction

2. Fiber lasers at 1030 nm
 ✓ Sub 300 fs: Fiber CPA
 ✓ Sub 100 fs: Direct amplification
 ✓ Sub 10 fs: Few cycles with OPCPA

3. Fiber lasers at 976 nm
 ✓ Main issues
 ✓ High power: CW laser
 ✓ High energy: Q-switch
 ✓ High peak power: Mode-lock systems
 ✓ Blue Light
 ✓ High brightness pumping of Yb-doped materials
1. Introduction

2. Fiber lasers at 1030 nm
 - Sub 300 fs: Fiber CPA
 - Sub 100 fs: Direct amplification
 - Sub 10 fs: Few cycles with OPCPA

3. Fiber lasers at 976 nm
 - Main issues
 - High power: CW laser
 - High energy: Q-switch
 - High peak power: Mode-lock systems
 - Blue Light
 - High brightness pumping of Yb-doped materials
A revolution in laser technology: fiber lasers

- Large amplification bandwidth
- Limited thermo-optical problems
- Excellent beam quality
- Efficient diode pumping operation
- High single pass gain
- Large variety of doping ions
- Compactness
Diode pumped solid-state laser evolution

End pumped bulk laser

- Laser Diode
- HR-Mirror
- Output coupler
- Gain medium
- Laser beam
- Lens

Side pumped bulk laser

- Laser Diode
- HR-Mirror
- Output coupler
- Gain medium
- Laser beam
- Lens
Diode pumped solid-state laser evolution

Stress-induced birefringence

Beam distortions

Low power

High power

Thermal lensing

Quantum defect = 24 %
Diode pumped solid-state laser evolution

Disk Laser
- Laser Diode
- Lens
- Disk
- Cooling
- HR-Mirror
- Laser beam
- Output coupler

Slab Laser
- Slab
- HR-Mirror
- Lens
- Laser Diode
- Laser beam

Fiber Laser
- Fiber
- Laser Diode
- HR-Mirror
- Lens

reduced thermo-optical distortions
Diode pumped solid-state laser evolution

Heat is spread over long distances in fibers
Standard single mode active fiber

- Core size < 10 µm
- Requires single mode pumping diodes
- Pumping limited to 1 W
- Length: 10..100 m (non linear effects)

Not compatible with high power
Double clad fiber

- High power multimode pumping diodes
- but higher core doping: \(\frac{\Phi_{co}}{\Phi_{cl}} \)

E. Snitzer et. al., Optical Fiber Communication Conference, PD5, 1988

E. Cormier CMDO 2010
Step index vs air-clad microstructured fibers

Double-clad fiber

- Polymer pump clad
- Polarization-maintaining

Air-clad fiber

- Higher NA for pump core
- No pump radiation in the polymer clad
- Larger MFD while singlemode
Typical microstructured fibers used in our systems

- Large core diameter with diffraction limited operation

80 μm (NA < 0.02)

- Air-clad microstructures for pump propagation (NA = 0.6)

- Polarization maintaining design for environmentally stable operation

40 μm (NA < 0.01)

Flexible fibers

Rod type fiber
1. Introduction

2. Fiber lasers at 1030 nm
 - Sub 300 fs: Fiber CPA
 - Sub 100 fs: Direct amplification
 - Sub 10 fs: Few cycles with OPCPA

3. Fiber lasers at 976 nm
 - Main issues
 - High power: CW laser
 - High energy: Q-switch
 - High peak power: Mode-lock systems
 - Blue Light
 - High brightness pumping of Yb-doped materials
Chirp Pulse Amplification

- Reduced peak power
- Reduced nonlinear effects

\[I = \frac{E}{A \cdot \tau} \]

CPA fiber amplifier: sub 300 fs

\[E = 100 \, \mu J \]
\[T = 270 \, \text{fs} \]
\[f = 300 \, \text{kHz} \]
\[P = 340 \, \text{MW} \]
\[\Delta \lambda = 7.2 \, \text{nm} \]
\[P_{\text{av}} = 30 \, \text{W} \]

Y. Zaouter et al, Optics letters 33, 1527 (2008)
J. Boullet et al, Optics letters 34, 1489 (2009)
CPA fiber amplifier: sub 300 fs

J. Boullet et al, *Optics letters* 34, 1489 (2009)
Direct amplification: sub 100 fs

Yb:KYW oscillator

Diodes
60 W @ 976 nm

Microstructured rod-type 80/200 fiber

Transmission grating
1740 l/mm

Output
Direct amplification: sub 100 fs

- Gain: \(I(z) = I_0 \exp(\alpha z) \)
- SPM: \(\omega(t) = \omega_0 \left(1 - \frac{\ln^2}{c} \frac{dI}{dt}\right) \)
- asymmetric gain

Spectrum extends up to 60 nm
Modulations smoothed out due to amplification
Direct amplification: sub 100 fs

12.5 W (1.25 µJ)

66 fs

8.6 W (0.86 µJ)

47 fs

18 MW: 1.25 µJ @ 65 fs

10 MHz

Y. Zaouter et al, Optics letters 33, 107 (2008)
Y. Zaouter et al, Optics express 15, 15, 9372 (2007)
FCPA pumped OPCPA : sub 10 fs

- Signal source
- Pump source
- Signal stretcher
- Yb Fiber CPA pump
- Parametric amplifiers
- Compressor
FCPA pumped OPCPA : sub 10 fs

- 7 fs Ti:Sapph Oscillator
- 300 nm @ -10dB
- CEP stabilized

Rainbow
FCPA pumped OPCPA : sub 10 fs
FCPA pumped OPCPA: sub 10 fs

- CEP stabilized Modelocked source
- Signal stretcher
- Yb Fiber CPA pump
- Parametric amplifier
- Compressor

Flow:

- FCPA Pump
- Rainbow signal
- BBO Type I
- SF10 prisms
- To SHG-FROG
FCPA pumped OPCPA : sub 10 fs

• Spectrum

$\Delta \lambda = 68 \text{ nm}$

1 µJ
68 nm amplified bandwidth @ 720 nm
10 fs (3.6 cycles)

• Duration

$\Delta \tau_{\text{field}} = 10 \text{ fs}$

100 kHz

J. Nillon, et al, ASSP 2009, [Post Deadline], Denver USA
1. Introduction

2. Fiber lasers at 1030 nm
 - Sub 300 fs: Fiber CPA
 - Sub 100 fs: Direct amplification
 - Sub 10 fs: Few cycles with OPCPA

3. Fiber lasers at 976 nm
 - Main issues
 - High power: CW laser
 - High energy: Q-switch
 - High peak power: Mode-lock systems
 - Blue Light
 - High brightness pumping of Yb-doped materials
Yb-doped fiber lasers operating at 976 nm

Configuration 1

$\lambda_p = 976 \text{ nm}$

$\lambda_s = 1030 \text{ nm}$
Yb-doped fiber lasers operating at 976 nm

Configuration 1

Yb-doped fiber

\[\lambda_p = 976 \text{ nm} \]

\[\lambda_s = 1030 \text{ nm} \]

Configuration 2

Yb-doped fiber

\[\lambda_p = 976 \text{ nm} \]

\[\lambda_s = 1030 \text{ nm} \]

915 nm

976 nm

1030 nm
Yb-doped fiber lasers operating at 976 nm

Issue #1: Transparency:

$$\sigma_s^{\text{em}} \sim \sigma_s^{\text{abs}}$$

Bleaching is achieved if:

$$\frac{n_{\text{trans}}}{n_{\text{Tot}}} = \frac{\sigma_s^{\text{abs}}}{\sigma_s^{\text{abs}} + \sigma_s^{\text{em}}} \approx 50\%$$

for a pump intensity of:

$$I_p^{\text{trans}} = \frac{h \nu_p}{\left(\frac{\sigma_s^{\text{abs}}}{\sigma_s^{\text{abs}}} - \sigma_s^{\text{em}} \right) \tau_{\text{fluo}}} \approx 30 \text{ kW/cm}^2$$

Transparency at 1030 nm achieved for inversion ~5% …
Yb-doped fiber lasers operating at 976 nm

Issue #2: Gain competition between quasi and true 3-level laser operation:

\[G_{1030} = 0.25 \, G_{976} + 0.72 \alpha_p \beta \]

- Pump absorption
- Clad to core area ratio

- Rod type U-LMA PCF: 80 / 200 μm

- \(\beta = 6.2 \): \(\alpha_p = 9 \) dB \(\Rightarrow \) \(G_{1030 \text{ nm}} < 50 \) dB

- \(\Phi_{\text{clad}} = 200 \) μm \(\Rightarrow \) \(P_p \sim \text{several 100W} \)
High power CW laser at 976 nm

Rod type fiber:
Microstructured
Double clad Yb doped
80µm/200µm
Absorption: 10 dB/m
Length: 1.2 m

1. $P_{trans}^p = 11$ W
2. $\beta = 6.2$, losses = 60 dB

Boulet et al., OE 16, 17891 (2008)
High power CW laser at 976 nm

Efficiency:
- Slope Efficiency = 48%
- $P_{\text{thresh}} = 18\text{W}$

Spectrum:
- 977.5 nm

Beam quality:
- $M^2 = 1.35$

Parasitic lasing suppression:
- 35 dB

Boulet et al., OE 16, 17891 (2008)
High energy Q-switch laser at 976 nm

MOPA: Master Oscillator Power Amplifier

Boulet et al., OL 35, 1650 (2010)
High energy Q-switch laser at 976 nm

Slope efficiency ≈ 35 %
Amplification threshold = 27 W

78 W @ 190 KHz, 32 ns
Or
1 mJ @ 10 KHz, 12 ns

M² < 1.4

Boulet et al., OL 35, 1650 (2010)
High peak power mode-lock laser at 976 nm

Mode-Locking:
non-linear polarization evolution
All-normal dispersion

$\Delta\lambda_{1/2} = 5 \text{ nm}$

$\Delta\lambda_{1/e^2} = 10 \text{ nm}$

Lhermite et al., OL 35, 3459 (2010)
High peak power mode-lock laser at 976 nm

Output pulses

\[\Delta \tau = 1.44 \text{ ps} = 1.41 \times 1.02 \text{ ps} \]

Compressed pulses

\[\Delta \tau = 402 \text{ fs} = 1.41 \times 285 \text{ fs} \]

- \(P_{av} = 480 \text{ mW} \)
- \(\nu = 40.6 \text{ MHz} \)
- \(E = 11.8 \text{ nJ} \)
- \(\Delta \lambda = 5 \text{ nm} \)
- \(\Delta \tau = 285 \text{ fs} \)
- \(E_{\text{compressed}} = 6 \text{ nJ} !!! \)
- \(P_{\text{peak}} = 21 \text{ kW} \)

50% compressor efficiency only!! Potentially 37 kW

Lhermite et al., OL 35, 3459 (2010)
Blue light generation at 488 nm

High energy fiber laser
59 W @ 977 nm

LBO crystal
\(\lambda/2\), \(\lambda/4\)

DM
\(\omega\), \(2\omega\)

36 % efficiency

16.1 W at 488 nm

Boulet et al., Europhoton (2010)
Blue light generation at 488 nm

Applications of high brightness intense sources at 488 nm
- Replacement of Ar ion lasers
- Laser surgery
- Dermatology
- Biophotonics
- Laser light shows and laser display RGB

Bouilet et al., Europhoton (2010)
High brightness pumping of Yb-doped material

Single-mode laser

\[d_0 = \frac{4\lambda f}{\pi D_0} \]

Multi-mode diode

\[d_0 = M^2 \frac{4\lambda f}{\pi D_0} \]

Brightness:

\[B = \frac{P}{S\Omega} \]
High brightness pumping of Yb-doped material

High power fiber laser

High power diode

Yb:CaF$_2$

High brightness optical pumping of Yb materials
High brightness pumping of Yb-doped material

ASE source at 976 nm

TEM_{00}

Up to 40 W
High brightness pumping of Yb-doped material

- Small signal gain up to 10 expected with long crystals
People:

F. Labaye (Phd)
J. Nillon (Phd)
G. Machinet (Phd)
J. Lhermite (PostDoc)
L. Lavoute (PostDoc)
C. Medina (Assistant Engineer, CNRS)
S. Petit (Research Engineer, CNRS)
S. Montant (Research Engineer, CEA)
D. Descamps (Research Engineer, CEA)
E. Cormier (Professor, University)

Collaborations:

HHG group @ CELIA
Institut d’optique (Palaiseau)
Institut of physics, Vilnius University, Vilnius, Lithuania (A. Piskargkas)
Institut of Applied Physics (IAP), Universität Jena, Germany (J. Limpert)
Photonics Institute, Vienna University of Technology, Vienna, Austria (A. Baltuska)
ETH, Zurich, Switzerland (U. Keller)
KEK, Tsukuba, Japan (T. Omori, J. Urakawa)
Clarendon Laboratory, University Oxford, England (A. Wyatt, I. Walmsley)
Eolite systems (Bordeaux)
Amplitude systèmes (Bordeaux)
CEA CESTA