Improving scintillating materials for medical imaging applications

Samuel BLAHUTA

Vladimir Ouspenski, Saint-Gobain Crystals
Bruno Viana, Aurélie Bessière, LCMCP

JNCO, July 4th-7th, 2011
CONTEXT

Saint-Gobain: development and commercialization of new medical imaging devices

LCMCP: experience modeling scintillation, characterization tools...

Thesis work: improve scintillating materials – Mechanisms & Properties

- **Lu$_{1.8}$Y$_{0.2}$SiO$_5$:Ce (LYSO:Ce) single crystals**
 - Medical applications: Positron Emission Tomography (PET)

- **Gd$_2$O$_2$S:Pr,Ce (GOS:Pr,Ce) ceramics**
 - Medical applications: Computed Tomography (CT)

- **(Lu$_{0.5}$Gd$_{0.5}$)$_2$O$_3$:Eu (LuGdO$_3$:Eu) ceramics**

Goal: - Understand scintillation mechanisms
 - Enhance performances (Light Yield, Response time...)

BLAHUTA Samuel – JNCO 2011
I. Scintillating Materials for Medical Imaging

II. Improving LYSO:Ce single crystals for PET

III. Improving Gd$_2$O$_2$S:Pr and LuGdO$_3$:Eu ceramics for CT

Summary & Perspectives
I. Scintillating Materials for Medical Imaging

II. Improving LYSO:Ce single crystals for PET

III. Improving Gd$_2$O$_2$S:Pr and LuGdO$_3$:Eu ceramics for CT

Summary & Perspectives
Scintillation: How does it work?

Excitation
- X-rays
- γ-rays

Absorption
- X or γ

Luminescent Center
- Excited level
- Emission
- Ground state

Valence Band
- Absorption
- Conversion
- Emission

Conduction Band

Applications
- Security (Nuclear material detection at airports…)
- Oil Logging
- Dosimetry
- High Energy Physics (LHC, CERN Geneva - CH)
- Medical Imaging (γ and X Tomography)
Medical imaging requirements

- Efficient absorption of the ionizing radiation
- High Light Yield (> 10,000 photons/MeV)
- Fast fluorescence (ns to ms)
- Transparency (at $\lambda_{\text{emission}}$)
- Minimal delayed luminescence (*afterglow*)

Some scintillating materials…

LYSO:Ce$^{3+}$

$5d-4f$

(420 nm)

LuGdO$_3$:Eu$^{3+}$

$4f-4f$

(610 nm)

Blurred images (left) are caused by afterglow
Main issues

- Electronic traps
- Deeper electronic traps

Scintillation

- Improving LYSO:Ce
- Improving Gd$_2$O$_2$S:Pr & LuGdO$_3$:Eu

Conduction

- Band
- Excited level
- Emission
- Ground state
- Valence Band

Luminescent Center

- Absorption
- X-rays
- γ-rays

-X or γ

-ΔT

Delayed Luminescence

- AFTERGLOW

Decreased Light Yield at 25°C

Thermoluminescence as characterization tool

Traps filling (X-rays @ 10 K) → Continuous Heating → Collected emission

- Trap properties (ΔE, kinetic...)

X-ray source

Optical fiber

BLAHUTA Samuel – JNCO 2011
I. Scintillating Materials for Medical Imaging

II. Improving LYSO:Ce single crystals for PET

III. Improving Gd$_2$O$_2$S:Pr and LuGdO$_3$:Eu ceramics for CT

Summary & Perspectives
Positron Emission Tomography (PET)

Crystals + Photomultiplier Tubes

Thermoluminescence of LYSO:Ce

At T > 300 K traps negatively impact Light Yield

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (g/cm³)</th>
<th>λ_{emission} (nm)</th>
<th>Light Yield (Photons/MeV)</th>
<th>Energy Resolution (%)</th>
<th>Decay Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi₄Ge₃O₁₂ (BGO)</td>
<td>7.13</td>
<td>480</td>
<td>8200</td>
<td>15%</td>
<td>300</td>
</tr>
<tr>
<td>LuAlO₃:Ce (LuAP:Ce)</td>
<td>8.3</td>
<td>365</td>
<td>11000</td>
<td>9%</td>
<td>60 + 600</td>
</tr>
<tr>
<td>(LuY)₂SiO₅:Ce (LYSO:Ce)</td>
<td>7.1</td>
<td>420</td>
<td>32000</td>
<td>8%</td>
<td>40 + afterglow</td>
</tr>
</tbody>
</table>
Trap identification\cite{1}

LYSO:Ce prepared with:
- Different oxygen content (Floating Zone Technique)
- Different dopant (Ce$^{3+}$, Tb$^{3+}$)

Traps:
- Depend on oxygen content during growth
- Are not dopant-dependent

Oxygen vacancies:
Created during Czochralski (CZ) growth (industrial technique)
→ CZ requires LOW OXYGEN CONTENT (Iridium crucible, 2100°C)

\cite{1} Blahuta S. et al., Materials 2011, 4, 1224-1237 – Special Issue
Decreasing trap activity (1/2)

Effect of annealing on trap concentration

Annealed in oxidizing conditions
(1500°C/48h in air)
Reduced TL intensity: some oxygen vacancies are filled

Annealed in reducing atmosphere
(1200°C/12h in Ar+5%H₂)
Increased TL intensity: some oxygen vacancies are created

Limited trap activity decrease by annealing

Low impact on scintillation properties
Decreasing trap activity (2/2)

Oxygen vacancies → 2+ (energetically favorable): $V_{O^{**}}$

Goal: reduce their electron affinity

How: by adding a co-dopant: Ca$^{2+}$, Mg$^{2+}$

Confirmation by TL:
- 8 times less with Mg$^{2+}$
- 19 times less with Ca$^{2+}$

Confirmation by Light Yield values:
28000 → 33000 Ph/MeV with Mg$^{2+}$
28000 → 34000 Ph/MeV with Ca$^{2+}$
I. Scintillating Materials for Medical Imaging

II. Improving LYSO:Ce single crystals for PET

III. Improving Gd$_2$O$_2$S:Pr and LuGdO$_3$:Eu ceramics for CT

Summary & Perspectives
Computational Tomography (CT)

| Scintillation | Improving LYSO:Ce | Improving Gd$_2$O$_2$S:Pr & LuGdO$_3$:Eu |

| X-ray source | Ceramics + photodiodes |

Afterglow: critical property

- Usually caused by traps with TL ~300 K
- LuGdO$_3$:Eu → Reduce traps with TL ~300 K
- Gd$_2$O$_2$S:Pr

Two methods for afterglow reduction

![TL Intensity vs Temperature](image)

<table>
<thead>
<tr>
<th>Density</th>
<th>$\lambda_{emission}$ (nm)</th>
<th>Light Yield (Photons/MeV)</th>
<th>Afterglow (ppm@3ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LuGdO$_3$:Eu</td>
<td>8.4</td>
<td>610</td>
<td>70000</td>
</tr>
<tr>
<td>Gd$_2$O$_2$S:Pr</td>
<td>7.0</td>
<td>495</td>
<td>20000</td>
</tr>
<tr>
<td>Gd$_2$O$_2$S:Pr,Ce</td>
<td>7.5</td>
<td>514</td>
<td>35000-50000</td>
</tr>
<tr>
<td>(Y,Gd)$_2$O$_3$:Eu,Pr</td>
<td>5.9</td>
<td>610</td>
<td>42000</td>
</tr>
<tr>
<td>CaWO$_4$</td>
<td>7.0</td>
<td>495</td>
<td>20000</td>
</tr>
</tbody>
</table>

BLAHUTA Samuel – JNCO 2011
Electronic traps in Gd$_2$O$_2$S ceramics: Sulfur vacancies

S atoms \rightarrow LAYER structure

Sulfur vacancies: lowest formation energy
- Created during very reducing processes
- Positively charged \rightarrow electron traps

Light Yield at 25°C not impacted by traps\(^\text{[2]}\)

Afterglow can be reduced by:
- Codoping \rightarrow LY also reduced!
- Sulfur annealing

\rightarrow 1\(^{\text{st}}\) attempt: SO$_2$, no pressure (LY: +7%)
\rightarrow 2\(^{\text{nd}}\) attempt: S, pressure

LuGdO$_3$:Eu,RE – co-doping for afterglow reduction

Luminescence mechanism:

$$Eu^{3+} + e^- \rightarrow Eu^{2+} \stackrel{h^+}{\rightarrow} (Eu^{3+})^* \rightarrow Eu^{3+} + h\nu$$

$$Trap + h^+ \rightarrow Trap^+ \stackrel{\Delta T}{\rightarrow} Trap + h^+ \quad \text{Afterglow}$$

RE$^{3+}$ co-dopants for efficient h$^+$ trapping

- No Light Yield reduction
- Doesn’t work with Ca$^{2+}$ or Zr$^{4+}$
LYSO:Ce single crystals
- Oxygen vacancies identified as the main electron traps
- Positive but limited effect of oxidizing post-treatment on traps
- Ca\(^{2+}/Mg^{2+}\) co-doping reduces trap activity and improves LY

Gd\(_2\)O\(_2\)S:Pr,Ce ceramics
- Sulfur vacancies are responsible for efficient electron trapping → Afterglow
- Traps may be removed by appropriate annealing (S, SO\(_2\)…)
- Gd\(_2\)O\(_2\)S:**Pr,Ce light yield is not impacted by traps

LuGdO\(_3\):Eu,RE ceramics
- Efficient afterglow reduction with Ce\(^{3+}\), Tb\(^{3+}\) and Pr\(^{3+}\) co-doping
- Good agreement between TL (trap concentration) and afterglow
- Efficient ceramics for X-ray Tomography
Thank you for your attention